		Revised ✓
Cell Biology		
Cell Structure		
Use the terms 'eukaryotic' and 'prokaryotic' to describe types of cells		
Describe the features of bacterial (prokaryotic) cells		
Demonstrate an understanding of the scale and size of cells and be able to make order of magnitude calculations, including standard form		
Recall the structures found in animal and plant (eukaryotic) cells including algal cells		
Use estimations and explain when they should be used to judge the relative size or area of sub-cellular structures		
Required practical 1: use a light microscope to observe, draw and label a selection of plant and animal cells		
Describe the functions of the structures in animal and plant (eukaryotic) cells		
Describe what a specialised cell is, including examples for plants and animals		
Describe what differentiation is, including differences between animals and plants		
Define the terms magnification and resolution		
Compare electron and light microscopes in terms of their magnification and resolution		
Carry out calculations involving magnification using the formula: magnification = size of image/		
size of real object - including standard form		
Cell Division		
Describe how genetic information is stored in the nucleus of a cell (including genes & chromosomes)		
Describe the processes that happen during the cell cycle, including mitosis (including recognise and describe where mitosis occurs)		
Describe stem cells, including sources of stem cells in plants and animals and their roles		
Describe the use of stem cells in the production of plant clones and therapeutic cloning		
Discuss the potential risks, benefits and issues with using stem cells in medical research/treatments (including diabetes and paralysis)		
Transport in Cells		
Describe the process of diffusion, including examples		
Explain how diffusion is affected by different factors		
Define and explain "surface area to volume ratio", and how this relates to single-celled and multicellular organisms (including calculations)		
Explain how the effectiveness of an exchange surface can be increased, including examples of adaptations for small intestines, lungs, gills roots & leaves		
Describe the process of osmosis (including calculation of water uptake & percentage gain and loss of mass of plant tissue)		
Required practical 2: investigate the effect of a range of concentrations of salt or sugar solutions on the mass of plant tissue		
Describe the process of active transport, including examples - gut and roots		
Explain the differences between diffusion, osmosis and active transport		
Notes:		

		Revised ✓
Organisation		
Principles of Organisation and Animal Tissues, Organs and Organ Systems Describe the levels of organisation within living organisms		
Describe the digestive system and how it works as an organ system (from KS3)		
Describe basic features of enzymes (including rate calculations for chemical reactions)		
Describe the lock and key theory as a model of enzyme action and explain how the shape a of the active sites makes		
the enzyme specific		
Explain the effect of temperature and pH on enzymes		
Describe the digestive enzymes, including their names, sites of production and actions		
Describe how the products of digestion are used		
Describe the features and functions of bile and state where it is produced and released from		
Required practical 3: use qualitative reagents to test for a range of carbohydrates, lipids and proteins		
Required practical 4: investigate the effect of pH on the rate of reaction of amylase enzyme		
Describe the structure of the human heart and lungs (including how lungs are adapted for gaseous exchange)		
Explain how the heart moves blood around the body (including role and position of the aorta, vena cava, pulmonary artery & vein and coronary arteries)		
Explain how the natural resting heart rate is controlled and how irregularities can be corrected		
Describe the structure and function of arteries, veins and capillaries		
Use simple compound measures such as rate and carry out rate calculations for blood flow		
Describe blood and identify its different components, including identifying blood cells from photographs/diagrams		
Describe the functions of blood components, including adaptations to function		
Describe what happens in coronary heart disease and what statins are used for		
Describe and evaluate treatments for coronary heart disease and heart failure (including drugs, mechanical devices or transplant)		
Recall that heart valves can become faulty and describe the consequences of this		
Describe how patients can be treated in the case of heart failure		
Describe health and the explain causes of ill-health and the relationship between health and disease		
Describe how different types of diseases may interact and translate disease incidence information between graphical and numerical forms		
Describe what risk factors are and give examples discussing human and financial costs of non-communicable diseases at local, national and global levels		
Describe what cancer is and explain the difference between benign and malignant tumours		
Describe the known risk factors for cancer, including genetic and lifestyle risk factors		
Plant tissues, organs and system		
Describe plant tissues (epidermal, palisade mesophyll, spongy mesophyll, xylem, phloem and meristem) and describe their functions		
Explain how the structure of plant tissues are related to their function within the leaf (plant organ) including stomata and guard cells		
Recall the plant parts that form a plant organ system that transports substances around the plant		
Explain how root hair cells, xylem and phloem are adapted to their functions		
Describe the process of transpiration and translocation, including the role of the different plant tissues		
Explain how the rate of transpiration can be affected by different factors (including naming the factors)		
Describe the role of stomata and guard cells in the control of gas exchange and water loss		
Notes:		

		Revised
Infaction and Posnonso		
Infection and Response		
Communicable Diseases Explain what a pathogen is and how pathogens are spread (inc how viruses, bacteria, protists and fungi are spread in		
animals and plants)		<u> </u>
Explain how pathogenic bacteria and viruses cause damage in the body		
Explain how the spread of diseases can be reduced or prevented		<u> </u>
Describe measles, HIV and tobacco mosaic virus as examples of viral pathogens		
Describe salmonella food poisoning and gonorrhoea as examples of bacterial pathogens		<u> </u>
Describe the signs, transmission and treatment of rose black spot infection in plants as an example of fungal pathogens		<u> </u>
Describe the symptoms, transmission and control of malaria, including knowledge of the mosquito vector as an example of a prototist pathogen		
Describe defences that stop pathogens entering the human body (including skin, nose, trachea & windpipe, stomach)		<u> </u>
Recall the role of the immune system		<u> </u>
Describe how white blood cells destroy pathogens		<u> </u>
Describe how vaccination works, including at the population level		
Explain how antibiotics and painkillers are used to treat diseases, including their limitations		
Describe how sources for drugs have changed over time and give some examples		
Describe how new drugs are tested, including pre-clinical testing and clinical trials (including double blind trials and placebos)		
Bioenergetics		
Photosynthesis		
Describe what happens in photosynthesis, including using a word equation and recognise the chemical formulas for carbon dioxide, water, oxygen & glucose		
Explain why photosynthesis is an endothermic reaction		
Recall the limiting factors of photosynthesis		
Explain how limiting factors affect the rate of photosynthesis, including graphical interpretation (limited to one factor)		
HT ONLY: Explain how the limiting factors of photosynthesis interact, inc graphical interpretation (two/three factors)		
HT ONLY: Explain how limiting factors are important to the economics of greenhouses, including data interpretation		
HT ONLY: Explain and use inverse proportion in the context of photosynthesis		
Required practical 5: investigate the effect of light intensity on the rate of photosynthesis using an aquatic organism such as pondweed		
Describe how the glucose produced in photosynthesis is used by plants		
Respiration		
Describe what happens in respiration including using a word equation and recognise the chemical formulas for carbon dioxide, water, oxygen & glucose		
Describe aerobic and anaerobic respiration with regard to the need for oxygen, the differing products and the relative amounts of energy transferred		
Recognise the equations for aerobic respiration, anaerobic respiration in muscles and anaerobic respiration in plants and yeast cells.		
Recall what type of respiration fermentation is and its economic importance.		
Describe what happens to heart rate, breathing rate and breath volume during exercise and why these changes occur		
Explain what happens when muscles do not have enough oxygen and define the term oxygen debt		
HT ONLY: Explain what happens to accumulated lactic acid in the body		
Explain the importance of sugars, amino acids, fatty acids and glycerol in the synthesis and breakdown of carbohydrates, proteins and lipids		
Explain what metabolism is, including examples		
Notes:		

Villi

Keywords

You should be able to use the following words correctly and understand which parts of the content they link to

Cells and Cell structure	Carbohydrate	Plant biology	Photosynthesis
Eukaryotic	Glucose	Epidermis	Glucose
Prokaryote	Starch	Palisade	Limiting factor
Algae	Protein	Mesophyll	Light intensity
Bacteria	Amino acids	Stomata	Cellulose
Cell membrane	Lipids	Guard cell	Nitrogen
Mitochondria	Fatty acids	Xylem	
Nucleus	Glycerol	Phloem	Respiration
Ribosome	Enzymes	Transpiration	Aerobic
Cytoplasm	Active site	Translocation	Anaerobic
Chloroplast	Denatured		Glycogen
Chlorophyll	Metabolism	Communicable disease	Heart rate
Vacuole	Optimum	Pathogen	Lactic acid
Cell wall	Protease	Virus	Oxygen debt
Specialised cell	Amylase	Protists	Fermentation
Stem cells	Lipase	Vector	Metabolic reactions
Differentiated	Bile	Agar	
		Hygiene	
Microscopes	Circulatory system	Antiseptic	
Magnification	Red blood cell	Disinfectant	
Resolving power	White blood cell	Malaria	
Micrometre (μm)	Plasma	Antibodies	
Nanometre (nm)	Platelets	Antitoxins	
	Urea	Chlorosis	
Cell transport	Haemoglobin	Deficiency	
Diffusion	Artery	Herd immunity	
Osmosis	Vein	Vaccination	
Active transport	Capillary	Painkillers	
Concentration gradient	Heart	Antibiotics	
Partially permeable membrane	Atrium	Penicillin	
Isotonic	Ventricle	Clinical trials	
Hypertonic	Vena cava	Placebo	
Hypotonic	Aorta	Double-blind	
	Coronary artery		
Digestive system	Stent	Non-communicable	
Tissue	Statins	disease	
Organ	Pacemaker	Risk factor	
Organ system	Valve	Carcinogen	
Digestion		Ionising radiation	
Stomach	Respiratory system	Correlation	
Pancreas	Alveoli	Benign tumour	
Liver	Gas exchange	Malignant tumour	
Gall bladder	Diaphragm	Cancer	
Small intestine	Ventilation	Obesity	
Large intestine		Diabetes	
V:II:			

Science – Biology Paper 1 (Trilogy)	Name:	Target grade: